

Luca.Bottura@cern.ch CAS on Superconductivity, Erice, May 8-17, 2002

Theory...

- It's 2016...
- ... nuclear war lurks between India and Pakistan ...
- Jill, a wonderful blonde, dicovers a new ceramic SC well above RT (Cu-Pt-Sc mix, the one that does not explode) ...
- ... large Pt and Sc reserves found in Sri-Lanka...
- ... Jill wins the Nobel Prize in Chemistry and Physics ...
- ... sees instant widespread applications of SC (B\$ over B\$)
- ... and saves the world from nuk'ing ...

... and Reality

- It's 2002...
- ... nuclear war lurks between India and Pakistan ...
- ... the workhorse of superconducting technology is (still) NbTi, discovered between '55 and '65...
- ... never awarded a Nobel Prize in Chemistry nor Physics ...
- ... the largest-scale application of superconductivity will be the LHC, costing a mere 2 B\$ and scheduled to come into operation for 2007 (theory or reality?) ...
- ... will it save the world from nuk'ing? Maybe!

Plan of the lecture:

- Look at accelerator magnets and demonstrate by examples (reality):
 - Coupling current effects
 - Current distribution
 - Field decay and snap-back in accelerator magnets
- These effects are important when looking at
 - high precision (better than 0.1 %)
 - extreme operating conditions (high ramp-rate)
 - because they affect reproducibility
- A virtual reality demo

Cable coupling currents

SC Rutherford cable in transverse field

Cable coupling currents

Eddy current I_{eddy} (A):

$$I_{eddy} = 41.5 \times 10^{-3} \frac{L_p w N}{R_c} \dot{B}_{\perp} \cos\left(\frac{\pi x}{w}\right)$$

LHC cable (w=15 mm, t=2 mm, α =7.5) with R_c=15 $\mu\Omega$ and dB/dt = 7 mT/s:

$$I_{eddy} \approx 0.8 \text{ A}$$

Magnetic moment per unit volume M_{eddy} (T):

$$M \approx \mu_0 L_p \left[\frac{N(N-1) \alpha}{120 (R_c)} \dot{B}_{\perp} \right]$$

$$M_{eddy} \approx 3 \text{ mT}$$

• Heat loss P_{eddy} (W/m):

$$P_{eddy} = 8.5 \times 10^{-3} \frac{L_p w^2 N(N-1)}{R} \dot{B}_{\perp}^2$$

$$P_{eddy} \approx 0.5 \text{ mW/m}$$

Coupling currents in a magnet

- eddy currents in a LHC dipole (inner layer)
 - $dI/dt = 10 A/s (dB/dt \approx 7 mT/s)$, $Rc = 15 \mu\Omega$

Field advance

• M_{eddy} generates a field that adds to the background field (*advance*) proportional to:

■ 1/R_c

Field and harmonics

loss and field measurements in LHC models

R_c distribution

- eddy current in a LHC dipole with R_c variations
 - $dI/dt = 10 A/s (dB/dt \approx 7 mT/s)$
 - $R_c^{left} = 17.5 \mu\Omega$ right-left asymmetric

Non-allowed harmonics

 non-allowed harmonics are produced, their magnitude depends on the R_c distribution Normal quadrupole during ramps

Reverse engineering...

variation in z can also be significant

of SSC Dipole Magnet Prototypes, Frontiers of Accelerator Magnet Technology, World Scientific, 184, 1996

Why is it important?

- field distortion is a headache for HEP
 - LHC dipoles during 10 A/s ramps and $R_c = 15 \mu\Omega$
 - $\Delta b_1 = 5.4 \times 10^{-4} \rightarrow \Delta Q = 0.054 \text{ vs. } 0.003 \text{ allowed}$
 - $\Delta b_3 = 1.0 \text{ x } 10^{-4} \rightarrow \Delta \xi = 52 \text{ vs. } 1 \text{ allowed}$

solution

- tolerate and correct (measure, measure, measure ...)
- slow-down (remember dB/dt dependence) ...
- R_c control, e.g. LHC $R_c > 15 \mu\Omega$, aiming at 20 $\mu\Omega$
 - Ag-Sn, Sn-Pb, Cu-Ni, Ni, Cr-coatings (few µm, bath or electrodeposition)
 - Cu-oxide formation (ageing of cable in a humid warehouse)
 - dirt, Mobil-1, soap
 - core for a Rutherford cable

any brighter ideas? Must be compatible with manufacturing process!

And other effects!

AC loss heat load

(provisional) conclusion – keep Rc as high as possible! insulate strands?

Current distribution

the strands in a multi-strand cables <u>never</u> carry the same current – why?

A simple case

simple situation: two-strands cable with a transposition fault linking a flux ψ

 a field ramp generates parasite supercurrents with long range and long time constant

current distribution from other origins (joints, Ic) has similar effects

Scalings

amplitude of the *super*currents:

linear scaling with L $I_{super} = \frac{L\psi}{2R_c I_p}$ linear scaling with $1/R_c$

time constant:

quadratic scaling with L

$$\tau = \frac{4(l-m)}{R_c L_p} \left(\frac{L}{\pi}\right)^2$$

linear scaling with 1/R_c

times can be extremely long (hours, days, months, years) the current is frozen in the strands

Something strange ...

 periodic field pattern observed along the length of a HERA dipole magnet ...

 ... appearing in all magnets, on all harmonics (SSC, RHIC, LHC) ...

It's current distribution!

 ... evolves and decays over time constants of several 100's to 1000's seconds...

Why is it important?

- early current sharing and premature quench
 - type-A and type-B behaviour in SSC dipoles
 - large ramp-rate dependence and pre-cycle influence in LHC dipoles

There is more than HEP...

- Ramp-rate limitation (RRL) in fusion magnets
 - Japanese Demonstration Poloidal Coil (DPC-U1, DPC-U2) showed catastrophic RRL
 - RRL observed in US-DPC above I_{limiting}

quench current

- quench
- o no quench

ramp-time, inversely proportional to dB/dt

Fig. 1 Ramp-rate limitation of US-DPC operating alone. Solid circles indicate quenches and open circles noquenches. The solid curve was calculated from Eq. (16).

M. Takayasu, et al., IEEE Trans. Appl. Sup., **3**(1), 456-459, 1993

So what?

- do not make R_c too small (<< 10 $\mu\Omega$)
 - AC loss
 - quench because of excessive heating
 - field distortions
- do not make R_c too large (>> 100 $\mu\Omega$)
 - (frozen) current cannot re-distribute and can cause premature quenches

is this all? NO!

Decay and Snap-back

Decay

long time constant (minutes, hours, days) resembles suspiciously current distribution

Snap-back

cubic dependence on field change resembles suspiciously penetration of a SC filament

History and memory

decay and SB depend on the powering history

One ...

- Current distribution is not uniform in the cables...
- ...and changes as a function of time generating a time-variable, alternating field along the strands...

... two ...

 ...the field change affects the magnetization of the super-conducting filaments...

... three ...

and the magnetization change averages to a net decrease (rectifying effect) – the decay!

Position s/Lp along the cable length

... et voilà!

The magnetization state is re-established as soon as the background field is increased by the same order of the internal field change in the cable (5 to 30 mT) – the snap-back!

A demonstration experiment

Ideas - *Degaussing* LHC

Ideas - LHC on the Fly

Continuous ramp at injection:

20 mT in 20 min

standard decay and SB

negligible decay and SB...

but useless for operation (SPS injection tracking not trivial)

Conclusions – Part I

- many complex effects can be understood using simple electromagnetism and appropriate tools
- prediction and control are however a challenge
 - a SC magnet is a bit like a weather report
 - Mega-multi-variable systems, e.g. 35 M-R_c's in an LHC dipole
 - difficult to model if you do not know where to start from !
 - production control only partially available (I_c, R_c, ...)
 - some effects cannot be avoided, e.g. the inhomogeneous current distribution, decay and SB
- extensive measurements are mandatory

Measure, measure, measure...

multi-MCHF project for the characterization of the LHC magnets and the operation of the LHC (*Multipoles-Factory*)

A Bit of Reality...

- Field quality reconstructed from measurements performed in MBP2N1
- Plot of homogeneity |B(x,y)-B1|/B1 inside the aperture of the magnet:
 - blue \Rightarrow OK (1 \times 10-4)
 - green \Rightarrow so, so $(5 \times 10-4)$
 - yellow \Rightarrow Houston, we have a problem (1 \times 10-3)
 - red \Rightarrow bye, bye (5 \times 10-3)

A typical LHC operation cycle

Sony Playstation III (LHC tracking)

Is your arm steady?

hit the cross of a 5 CHF coin... at 30 km distance...

with a ≈5 mm thick laser... shooting at your back!

... or book your vacations today

We will need a bunch of very intelligent guys to operate LHC...

and there are still vacancies in control room!